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“Everyone should learn how to code.” That’s my favorite quote from Suzanne Keen, formerly the Thomas 
Broadus Professor of English and Dean of the College at Washington and Lee University, where I have taught 
computer science for more than 30 years. The quote also states the reason why I wrote the first and second 
editions of Fundamentals of Python: First Programs, and why I now offer you this third edition. The book is 
intended for an introductory course in programming and problem solving. It covers the material taught in a 
typical Computer Science 1 (CS1) course at the undergraduate or high school level.

This book covers five major aspects of computing:

1.	 Programming basics—Data types, control structures, algorithm development, and program 
design with functions are basic ideas that you need to master in order to solve problems with 
computers. This book examines these core topics in detail and gives you practice employing your 
understanding of them to solve a wide range of problems.

2.	 Object-oriented programming (OOP)—Object-oriented programming is the dominant programming 
paradigm used to develop large software systems. This book introduces you to the fundamental 
principles of OOP and enables you to apply them successfully.

3.	 Data and information processing—Most useful programs rely on data structures to solve 
problems. These data structures include strings, arrays, files, lists, and dictionaries. This book 
introduces you to these commonly used data structures and includes examples that illustrate 
criteria for selecting the appropriate data structures for given problems.

4.	 Software development life cycle—Rather than isolate software development techniques in one 
or two chapters, this book deals with them throughout in the context of numerous case studies. 
Among other things, you’ll learn that coding a program is often not the most difficult or challenging 
aspect of problem solving and software development.

5.	 Contemporary applications of computing—The best way to learn about programming and 
problem solving is to create interesting programs with real-world applications. In this book, you’ll 
begin by creating applications that involve numerical problems and text processing. For example, 
you’ll learn the basics of encryption techniques, such as those that are used to make your credit 
card number and other information secure on the Internet. But unlike many other introductory 
texts, this one does not restrict itself to problems involving numbers and text. Most contemporary 
applications involve graphical user interfaces, event-driven programming, graphics, image 
manipulation, network communications, and data analysis. These topics are not consigned to the 
margins but are presented in depth after you have mastered the basics of programming.

Why Python?
Computer technology and applications have become increasingly more sophisticated over the past three 
decades, and so has the computer science curriculum, especially at the introductory level. Today’s students 
learn a bit of programming and problem solving and are then expected to move quickly into topics like software 
development, complexity analysis, and data structures that 35 years ago were relegated to advanced courses. 
In addition, the ascent of object-oriented programming as the dominant paradigm of problem solving has led 
instructors and textbook authors to implant powerful, industrial-strength programming languages such as 

Preface
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C++ and Java in the introductory curriculum. As a result, instead of experiencing the rewards and excitement of solving 
problems with computers, beginning computer science students often become overwhelmed by the combined tasks 
of mastering advanced concepts as well as the syntax of a programming language.

This book uses the Python programming language as a way of making the first year of studying computer science 
more manageable and attractive for students and instructors alike. Python has the following pedagogical benefits:

	• Python has simple, conventional syntax. Python statements are very close to those of pseudocode algorithms, 
and Python expressions use the conventional notation found in algebra. Thus, students can spend less time 
learning the syntax of a programming language and more time learning to solve interesting problems.

	• Python has safe semantics. Any expression or statement whose meaning violates the definition of the language 
produces an error message.

	• Python scales well. It is very easy for beginners to write simple programs in Python. Python also includes all 
of the advanced features of a modern programming language, such as support for data structures and object-
oriented software development, for use when they become necessary.

	• Python is highly interactive. Expressions and statements can be entered at an interpreter’s prompts to allow the 
programmer to try out experimental code and receive immediate feedback. Longer code segments can then be 
composed and saved in script files to be loaded and run as modules or standalone applications.

	• Python is general purpose. In today’s context, this means that the language includes resources for 
contemporary applications, including media computing and networks.

	• Python is free and is in widespread use in industry. Students can download Python to run on a variety of 
devices. There is a large Python user community, and expertise in Python programming has great résumé value.

To summarize these benefits, Python is a comfortable and flexible vehicle for expressing ideas about computation, 
both for beginners and for experts. If students learn these ideas well in the first course, they should have no problems 
making a quick transition to other languages needed for courses later in the curriculum. Most importantly, beginning 
students will spend less time staring at a computer screen and more time thinking about interesting problems to solve.

Organization of the Text
The approach of this text is easygoing, with each new concept introduced only when it is needed.

Chapter 1 introduces computer science by focusing on two fundamental ideas, algorithms and information pro-
cessing. A brief overview of computer hardware and software, followed by an extended discussion of the history of 
computing, sets the context for computational problem solving.

Chapters 2 and 3 cover the basics of problem solving and algorithm development using the standard control 
structures of expression evaluation, sequencing, Boolean logic, selection, and iteration with the basic numeric data 
types. Emphasis in these chapters is on problem solving that is both systematic and experimental, involving algorithm 
design, testing, and documentation.

Chapters 4 and 5 introduce the use of the strings, text files, lists, and dictionaries. These data structures are both 
remarkably easy to manipulate in Python and support some interesting applications. Chapter 5 also introduces simple 
function definitions as a way of organizing algorithmic code.

Chapter 6 explores the technique and benefits of procedural abstraction with function definitions. Top-down design 
and stepwise refinement with functions are examined as means of structuring code to solve complex problems. Details 
of namespace organization (parameters, temporary variables, and module variables) and communication among soft-
ware components are discussed.

Chapter 7 examines recursive design with functions. A section on functional programming with higher-order func-
tions shows how to exploit functional design patterns to simplify solutions.
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Chapter 8 focuses on the use of existing objects and classes to compose programs. Special attention is paid to 
the application programming interface (API), or set of methods, of a class of objects and the manner in which objects 
cooperate to solve problems. This chapter also introduces two contemporary applications of computing: graphics and 
image processing. These are areas in which object-based programming is particularly useful.

Chapter 9 introduces the definition of new classes to construct graphical user interfaces (GUIs). The chapter 
contrasts the event-driven model of GUI programs with the process-driven model of terminal-based programs. The 
chapter explores the creation and layout of GUI components, as well as the design of GUI-based applications using 
the model/view pattern. The initial approach to defining new classes in this chapter is unusual for an introductory 
textbook: students learn that the easiest way to define a new class is to customize an existing class using subclassing 
and inheritance.

Chapter 10 continues the exploration of object-oriented design with the definition of entirely new classes. Several 
examples of simple class definitions from different application domains are presented. Some of these are then inte-
grated into more realistic applications to show how object-oriented software components can be used to build complex 
systems. Emphasis is on designing appropriate interfaces for classes that exploit polymorphism.

Chapter 11 introduces tools and techniques for performing data analysis, a fast-growing application area of com-
puter science. Topics include the acquisition and cleaning of data sets, applying functions to determine relationships 
among data, and deploying graphs, plots, and charts to visualize these relationships.

Chapter 12 covers advanced material related to several important areas of computing: concurrent programming, 
networks, and client/server applications. This chapter thus gives students challenging experiences near the end of the 
first course. This chapter introduces multithreaded programs and the construction of simple network-based client/
server applications.

Chapter 13 covers some topics addressed at the beginning of a traditional CS2 course. This chapter introduces 
complexity analysis with big-O notation. Enough material is presented to enable you to perform simple analyses of 
the running time and memory usage of algorithms and data structures, using search and sort algorithms as examples.

New to This Edition
The third edition includes the following new or updated content and features:

	• A new chapter (Chapter 7) on design with recursion. This chapter incorporates and expands on material on 
recursive functions and higher-order functions from Chapter 6 of the second edition.

	• A new chapter (Chapter 11) on data analysis and visualization. This chapter introduces tools and techniques 
for acquiring data sets, cleaning them, and applying functions to them to determine relationships which can be 
visualized in plots, charts, and graphs.

	• Updated coverage of the history of computing in Chapter 1.

	• New fail-safe programming sections added to most chapters to demonstrate best practices for programming 
securely.

	• New list of key terms in each chapter.

	• Updated end-of-chapter review questions and programming exercises.

	• End-of-chapter programming exercises mapped to the learning objectives for each chapter.

	• New debugging exercises in each chapter provide examples of challenging programming errors and give you 
experience in diagnosing and correcting them.

	• Several new case studies as well as new or updated programming exercises.

	• Text revisions throughout with a focus on readability.
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Features of the Text
This book explains and develops concepts carefully, using frequent examples and diagrams. New concepts are then 
applied in complete programs to show how they aid in solving problems. The chapters place an early and consistent 
emphasis on good writing habits and neat, readable documentation.

The book includes several other important features:

	• Chapter Objectives: Each chapter begins with a set of learning objectives which describe the skills and 
concepts you will acquire from a careful reading of the chapter.

	• Chapter Summary: Each chapter ends with a summary of the major concepts covered in the chapter.

	• Key Terms: When a technical term is introduced in the text, it appears in boldface. The list of terms appears 
after the chapter summary. Definitions of the key terms are provided in the glossary.

Case Study

Case Studies: The Case Studies present complete Python programs ranging from the simple to the 
substantial. To emphasize the importance and usefulness of the software development life cycle, case 
studies are discussed in the framework of a user request, followed by analysis, design, implementation, and 
suggestions for testing, with well-defined tasks performed at each stage. Some case studies are extended in 
end-of-chapter programming exercises.

Exercise

Exercises: Most major sections of each chapter end with exercise questions that reinforce the reading by asking 
basic questions about the material in the section.

Fail-Safe Programming

Fail-Safe Programming: Fail-Safe Programming sections include a discussion of ways to make a program 
detect and respond gracefully to disturbances in its runtime environment.
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Review Questions

Review Questions: Multiple-choice review questions allow you to revisit the concepts presented in each 
chapter.

Programming Exercises

Programming Exercises: Each chapter ends with a set of programming projects of varying difficulty. Each 
programming exercise is mapped to one or more relevant chapter learning objectives and gives you the 
opportunity to design and implement a complete program that utilizes major concepts presented in that 
chapter.

Debugging Exercises

Debugging Exercises: Debugging exercises illustrate a typical program error with suggestions for repairing it.

	• A software toolkit for image processing: This book comes with an open-source Python toolkit for the easy 
image processing discussed in Chapter 8. The toolkit can be obtained with the ancillaries at www.cengage.com 
or at https://kennethalambert.com/python/

	• A software toolkit for GUI programming: This book comes with an open-source Python toolkit for the easy GUI 
programming introduced in Chapter 9. The toolkit can be obtained with the ancillaries at www.cengage.com or 
at https://kennethalambert.com/breezypythongui/

	• Appendices: Five appendices include information on obtaining Python resources, installing the toolkits, using 
the toolkits’ interfaces, and suggestions for further reading.

	• Glossary: Definitions of key terms are collected in a glossary.

Inclusivity and Diversity
Cengage is committed to providing educational content that is inclusive and welcoming to all learners. Research 
demonstrates that students who experience a sense of belonging in class more successfully make meaning out of, and 
find relevance in, what they encounter in learning content. To improve both the learning process and outcomes, our 
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materials seek to affirm the fullness of human diversity with respect to ability, language, culture, gender, age, socio-
economics, and other forms of human difference that students may bring to the classroom.

Across the computing industry, standard coding language, such as “Master” and “Slave” is being retired in favor of lan-
guage that is more inclusive, such as “Supervisor/Worker,” “Primary/Replica,” or “Leader/Follower.” At this time, different 
software development and social media companies are adopting their own replacement language and currently there is no 
shared standard. In addition, the terms “Master” and “Slave” remain deeply embedded in legacy code and understanding 
this terminology remains necessary for new programmers. When required for understanding, Cengage will introduce the 
non-inclusive term in the first instance but will then provide an appropriate replacement terminology for the remainder of 
the discussion or example. We appreciate your feedback as we work to make our products more inclusive for all.

For more information about Cengage’s commitment to inclusivity and diversity, please visit https://www.cengage 
.com/inclusion-diversity/

Course Solutions
Online Learning Platform: MindTap
Today’s leading online learning platform, MindTap for Fundamentals of Python, Third Edition provides complete con-
trol to craft a personalized, engaging learning experience that challenges students, builds confidence, and elevates 
performance.

MindTap introduces students to core concepts from the beginning of the course, using a simplified learning path 
that progresses from understanding to application and delivers access to eTextbooks, study tools, interactive media, 
auto-graded assessments, and performance analytics.

MindTap activities for Fundamentals of Python: First Programs are designed to help students build the skills needed 
in today’s workforce. Research shows employers seek critical thinkers, troubleshooters, and creative problem-solvers 
to stay relevant in our fast-paced, technology-driven world. MindTap achieves this with assignments and activities 
that provide hands-on practice and real-life relevance. Students are guided through assignments that reinforce basic 
knowledge and understanding before moving on to more challenging problems.

All MindTap activities and assignments are tied to defined chapter learning objectives. Hands-on coding labs pro-
vide real-life application and practice. Readings and dynamic visualizations support the lecture, while a post-course 
assessment measures exactly how much a student has learned. MindTap provides the analytics and reporting to easily 
see where the class stands in terms of progress, engagement, and completion rates. The content and learning path 
can be used as provided, customized directly in the MindTap platform, or integrated into the Learning Management 
System (LMS) to meet the needs of a particular course . Instructors can control what students see and when they see 
it. Learn more at https://www.cengage.com/mindtap.

In addition to the readings, the MindTap for Fundamentals of Python: First Programs, Third Edition includes the following:

	• Coding labs. These supplemental assignments provide real-world application and encourage students to 
practice new programming concepts in a complete online IDE. New and improved Guided Feedback provides 
personalized and immediate feedback to students as they proceed through their coding assignments so that 
they can understand and correct errors in their code.

	• Gradeable assessments and activities. All assessments and activities from the readings are available as 
gradeable assignments within MindTap, including Exercises and Review Questions.

	• Video quizzes. These graded assessments provide a visual explanation of foundational programming concepts 
that can be applied across multiple languages. Questions accompany each video to confirm understanding of 
new material.

Prefacexviii

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	• Interactive activities. These embedded interactive flowcharts, tabbed explorations, and click-to-reveal 
experiences are designed to engage students and help them assess their understanding of introductory 
computer science concepts as they progress through their chapter readings.

	• Interactive study aids. Flashcards and PowerPoint lectures help users review main concepts from the units.

Supplemental Package
Instructor and Student Resources
Additional instructor and student resources for this product are available online.

Instructor assets include an Instructor’s Manual, Educator’s Guide, PowerPoint® slides, and a test bank powered 
by Cognero®. Student assets include data sets. Sign up or sign in at www.cengage.com to search for and access this 
product and its online resources.

	• Instructor Manual. The Instructor Manual that accompanies this textbook includes additional instructional 
material to assist in class preparation, including items such as Overviews, Chapter Objectives, Teaching Tips, 
Quick Quizzes, Class Discussion Topics, Additional Projects, Additional Resources, and Key Terms.

	• Test Bank. Cengage Testing Powered by Cognero is a flexible, online system that allows you to:

	■ Author, edit, and manage test bank content from multiple Cengage solutions.

	■ Create multiple test versions in an instant.

	■ Deliver tests from your LMS, your classroom, or wherever you want.

	• PowerPoint Presentations. This text provides PowerPoint slides to accompany each chapter. Slides may 
be used to guide classroom presentations, to make available to students for chapter review, or to print as 
classroom handouts. Files are provided for every figure in the text. Instructors may use the files to customize 
PowerPoint slides, illustrate quizzes, or create handouts.

	• Solution and Answer Guide. Solutions and rationales to review questions and exercises are provided to assist 
with grading and student understanding.

	• Solutions. Solutions to all programming exercises and case studies are available. If an input file is needed to run 
a programming exercise, it is included with the solution file.

	• Data Files. Data files necessary to complete some of the steps in the programming exercises are available. If an 
input file is needed to run a program, it is included with the source code.

	• Educator’s Guide. The Educator’s Guide contains a detailed outline of the corresponding MindTap course.

	• Transition Guide. The Transition Guide outlines information on what has changed from the Second Edition.

Supplements can be found at https://faculty.cengage.com/. Sign In or create an account, then search for this title. 
You can save the title for easy access and then download the resources that you need.
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1

Learning Objectives
When you complete this chapter, you will be able to:

	› 1.1	 Describe the basic features of an algorithm

	› 1.2	 Explain how hardware and software collaborate in a computer’s architecture

	› 1.3	 Summarize a brief history of computing

	› 1.4	 Compose and run a simple Python program

Introduction

Chapter 1

As a reader of this book, you almost certainly have played a video game and listened to digital music. It’s likely 
that you have watched a movie on Netflix after preparing a snack in a microwave. Chances are that today you 
will make a phone call, send or receive a text message, take a photo, or consult your favorite social network 
on a smartphone, which is a small computer. You and your friends have most likely used a desktop or laptop 
computer to do significant coursework in high school or college.

Computer technology is almost everywhere: in our homes, schools, and in the places where we work 
and play. Computer technology is essential to modern entertainment, education, medicine, manufacturing, 
communications, government, and commerce. We have digital lifestyles in an information-based economy. 
Some people even claim that nature itself performs computations on information structures present in DNA 
and in the relationships among subatomic particles.

In the following chapters you will learn about computer science, which is the study of computation that has 
made this new technology and this new world possible. You will also learn how to use computers effectively 
and appropriately to enhance your own life and the lives of others.

1.1  �Two Fundamental Ideas of Computer Science: 
Algorithms and Information Processing

Like most areas of study, computer science focuses on a broad set of interrelated ideas. Two of the most basic 
ones are algorithms and information processing. In this section, these ideas are introduced in an informal way. 
You will examine them in more detail in later chapters.

1
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Chapter 1 Introduction2

Algorithms
People computed long before the invention of modern computing devices, and many continue to use devices that we 
might consider primitive. For example, consider how merchants made change for customers in marketplaces before 
the existence of credit cards, pocket calculators, or cash registers. Making change can be a complex activity. It takes 
some mental effort to get it right every time. Let’s consider what’s involved in this process.

According to one method, the first step is to compute the difference between the purchase price and the amount 
of money that the customer gives the merchant. The result of this calculation is the total amount that the merchant 
must return to the purchaser. For example, if you buy a dozen eggs at the farmers’ market for $2.39 and you give the 
farmer a $10 bill, she should return $7.61 to you. To produce this amount, the merchant selects the appropriate coins 
and bills that add up to $7.61.

According to another method, the merchant starts with the purchase price and goes toward the amount 
given. First, coins are selected to bring the price to the next dollar amount (in this case, $0.61 = 2 quarters, 1 
dime, and 1 penny), then dollars are selected to bring the price to the next five-dollar amount (in this case, 
$2), and then, in this case, a $5 bill completes the transaction. As you will see in this book, there can be many 
possible methods or algorithms that solve the same problem, and the choice of the best one is a skill you will 
acquire with practice.

Few people can subtract three-digit numbers without resorting to some manual aids, such as pencil and paper. 
As you learned in grade school, you can carry out subtraction with pencil and paper by following a sequence of well-
defined steps. You have probably done this many times but never made a list of the specific steps involved. Making 
such lists to solve problems is something computer scientists do all the time. For example, the following list of steps 
describes the process of subtracting two numbers using a pencil and paper:

Step 1	 Write down the two numbers, with the larger number above the smaller number and their digits aligned 
in columns from the right.

Step 2	 Assume that you will start with the rightmost column of digits and work your way left through the 
various columns.

Step 3	 Write down the difference between the two digits in the current column of digits, borrowing a 1 from 
the top number’s next column to the left if necessary.

Step 4	 If there is no next column to the left, stop. Otherwise, move to the next column to the left, and go back 
to Step 3.

If the computing agent (in this case a human being) follows each of these simple steps correctly, the entire process 
results in a correct solution to the given problem. We assume in Step 3 that the agent already knows how to compute 
the difference between the two digits in any given column, borrowing if necessary.

To make change, most people can select the combination of coins and bills that represent the correct change amount 
without any manual aids, other than the coins and bills. But the mental calculations involved can still be described in 
a manner similar to the preceding steps, and we can resort to writing them down on paper if there is a dispute about 
the correctness of the change.

The sequence of steps that describes each of these computational processes is called an algorithm. Informally, 
an algorithm is like a recipe. It provides a set of instructions that tells us how to do something, such as make change, 
bake bread, or put together a piece of furniture. More precisely, an algorithm describes a process that ends with a 
solution to a problem. The algorithm is also one of the fundamental ideas of computer science. An algorithm has the 
following features:

1.	  An algorithm consists of a finite number of instructions.

2.	 Each individual instruction in an algorithm is well defined. This means that the action described 
by the instruction can be performed effectively or be executed by a computing agent. For example, 
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1.1  Two Fundamental Ideas of Computer Science: Algorithms and Information Processing 3

any computing agent capable of arithmetic can compute the difference between two digits. So, an 
algorithmic step that says “compute the difference between two digits” would be well defined. On the 
other hand, a step that says “divide a number by 0” is not well defined, because no computing agent 
could carry it out.

3.	 An algorithm describes a process that eventually halts after arriving at a solution to a problem. For example, 
the process of subtraction halts after the computing agent writes down the difference between the two 
digits in the leftmost column of digits.

4.	 An algorithm solves a general class of problems. For example, an algorithm that describes how to make 
change should work for any two amounts of money whose difference is greater than or equal to $0.00.

Creating a list of steps that describe how to make change might not seem like a major accomplishment to you. But the 
ability to break a task down into its component parts is one of the main jobs of a computer programmer. Once you 
write an algorithm to describe a particular type of computation, you can build a machine to do the computing. Put 
another way, if you can develop an algorithm to solve a problem, you can automate the task of solving the problem. 
You might not feel compelled to write a computer program to automate the task of making change, because you can 
probably already make change yourself fairly easily. But suppose you needed to do a more complicated task—such as 
sorting a list of 100 names. In that case, a computer program would be very handy.

Computers can be designed to run a small set of algorithms for performing specialized tasks, such as operating 
a microwave. But we can also build computers, like the one on your desktop, that are capable of performing a 
task described by any algorithm. These computers are truly general-purpose problem-solving machines. They 
are unlike any machines that were built before, and they have formed the basis of the completely new world in 
which we live.

Later in this book, we introduce a notation for expressing algorithms and some suggestions for designing algorithms. 
You will see that algorithms and algorithmic thinking are critical underpinnings of any computer system.

Information Processing
Since people first learned to write several thousand years ago, they have processed information. Information itself 
has taken many forms in its history, from the marks impressed on clay tablets in ancient Mesopotamia; to the first 
written texts in ancient Greece; to the printed words in the books, newspapers, and magazines mass-produced 
since the European Renaissance; to the abstract symbols of modern mathematics and science used during the 
past 350 years. Only recently, however, have human beings developed the capacity to automate the processing of 
information by building computers. In the modern world of computers, information is also commonly referred to 
as data. But what is information?

Like mathematical calculations, information processing can be described with algorithms. In our earlier example 
of making change, the subtraction steps involved manipulating symbols used to represent numbers and money. In 
carrying out the instructions of any algorithm, a computing agent manipulates information. The computing agent 
starts with some given information (known as input), transforms this information according to well-defined rules, and 
produces new information, known as output.

It is important to recognize that the algorithms that describe information processing can also be represented as 
information. Computer scientists have been able to represent algorithms in a form that can be executed effectively 
and efficiently by machines. They have also designed real machines, called electronic digital computers, which are 
capable of executing algorithms.

Computer scientists more recently discovered how to represent many other things, such as images, music, human 
speech, and video, as information. Many of the media and communication devices that we now take for granted would be 
impossible without this new kind of information processing. We examine many of these achievements in more detail in 
later chapters.
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1.2  The Structure of a Modern Computer System
We now give a brief overview of the structure of modern computer systems. A modern computer system consists of 
hardware and software. Hardware consists of the physical devices required to execute algorithms. Software is the set 
of these algorithms, represented as programs, in particular programming languages. In the discussion that follows, 
we focus on the hardware and software found in a typical desktop computer system, although similar components are 
also found in other computer systems, such as smartphones and automatic teller machines (ATMs).

Computer Hardware
The basic hardware components of a computer are memory, a central processing unit (CPU), and a set of 
input/output devices, as shown in Figure 1-1.

Input device Output device

CPU

Memory

Figure 1-1  Hardware components of a modern computer system

Human users primarily interact with the input and output devices. The input devices include a keyboard, a mouse, 
a trackpad, a microphone, and a touchscreen. Common output devices include a monitor and speakers. Computers can 
also communicate with the external world through various ports that connect them to networks and to other devices 
such as smartphones and digital cameras. The purpose of most input devices is to convert information that human 
beings deal with, such as text, images, and sounds, into information for computational processing. The purpose of 
most output devices is to convert the results of this processing back to human-usable form.

These short end-of-section exercises are intended to stimulate your thinking about computing.

1.	 List three common types of computing agents.

2.	 Write an algorithm that describes the second part of the process of making change (counting out the 
coins and bills).

3.	 Write an algorithm that describes a common task, such as baking a cake.

4.	 Describe an instruction that is not well defined and thus could not be included as a step in an algorithm. 
Give an example of such an instruction.

5.	 In what sense is a laptop computer a general-purpose problem-solving machine?

6.	 List four devices that use computers and describe the information that they process. (Hint: Think of the 
inputs and outputs of the devices.)

Exercise 1-1
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1.2  The Structure of a Modern Computer System 5

Computer memory is set up to represent and store information in electronic form. Specifically, information is stored 
as patterns of binary digits (1s and 0s). To understand how this works, consider a basic device such as a light switch, 
which can only be in one of two states, on or off. Now suppose there is a bank of switches that control 16 small lights 
in a row. By turning the switches off or on, we can represent any pattern of 16 binary digits (1s and 0s) as patterns of 
lights that are on or off. As you will see later in this book, computer scientists have discovered how to represent any 
information, including text, images, and sound, in binary form.

Now, suppose there are 8 of these groups of 16 lights. We can select any group of lights and examine or change the 
state of each light within that collection. We have just developed a tiny model of computer memory. The memory has 
8 cells, each of which can store 16 bits of binary information. A diagram of this model, in which the memory cells are 
filled with binary digits, is shown in Figure 1-2. This memory is also sometimes called primary memory or internal 
or random access memory (RAM).

1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1
1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1
0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0

Cell 7
Cell 6
Cell 5
Cell 4
Cell 3
Cell 2
Cell 1
Cell 0

Figure 1-2  A model of computer memory

The information stored in memory can represent any type of data, such as numbers, text, images, sound, or the 
instructions of a program. Once the information is stored in memory, we typically want to do something with it—that 
is, we want to process it. The part of a computer that is responsible for processing data is the central processing unit 
(CPU). This device, which is also sometimes called a processor, consists of electronic switches arranged to perform 
simple logical, arithmetic, and control operations. The CPU executes an algorithm by fetching its binary instructions 
from memory, decoding them, and executing them. Executing an instruction might involve fetching other binary 
information—the data—from memory as well.

The processor can locate data in a computer’s primary memory very quickly. However, these data exist only as 
long as electric power comes into the computer. If the power fails or is turned off, the data in primary memory are 
lost. Clearly, a more permanent type of memory is needed to preserve data. This more permanent type of memory is 
called external or secondary memory, and it comes in several forms. Magnetic storage media, such as tapes and hard 
disks, allow bit patterns to be stored as patterns on a magnetic field. Semiconductor storage media, such as flash 
memory sticks and universal serial bus (USB) drives, perform much the same function with a different technology, 
as do optical storage media, such as compact disks (CDs) and digital video disks (DVDs). Some of these secondary 
storage media can hold much larger quantities of information than the internal memory of a computer.

Computer Software
You have learned that a computer is a general-purpose problem-solving machine. To solve any computable problem, 
a computer must be capable of executing any algorithm. Because it is impossible to anticipate all of the problems for 
which there are algorithmic solutions, there is no way to hardwire all potential algorithms into a computer’s hardware. 
Instead, some basic operations are built into the hardware’s processor and require any algorithm to use them. The 
algorithms are converted to binary form and then loaded, with their data, into the computer’s memory. The processor 
can then execute the algorithms’ instructions by running the hardware’s more basic operations.

Any programs that are stored in memory so that they can be executed later are called software. A program stored 
in computer memory must be represented in binary digits, which is also known as machine code. Loading machine 
code into computer memory one digit at a time would be a tedious, error-prone task for human beings. It would be 
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convenient if we could automate this process to get it right every time. For this reason, computer scientists have 
developed another program, called a loader, to perform this task. A loader takes a set of machine language instructions 
as input and loads them into the appropriate memory locations. When the loader is finished, the machine language 
program is ready to execute. Obviously, the loader cannot load itself into memory, so this is one of those algorithms 
that must be hardwired into the computer.

Now that a loader exists, you can load and execute other programs that make the development, execution, and 
management of programs easier. This type of software is called system software. The most important example of system 
software is a computer’s operating system. You are probably already familiar with at least one of the most popular 
operating systems, such as Linux, Apple’s macOS, and Microsoft’s Windows. An operating system is responsible for 
managing and scheduling several concurrently running programs. It also manages the computer’s memory, including the 
external storage, and manages communications between the CPU, the input/output devices, and other computers on a 
network. An important part of any operating system is its file system, which allows human users to organize their data and 
programs in permanent storage. Another important function of an operating system is to provide user interfaces—that 
is, ways for the human user to interact with the computer’s software. A terminal-based interface accepts inputs from a 
keyboard and displays text output on a monitor screen. A graphical user interface (GUI) organizes the monitor screen 
around the metaphor of a desktop, with windows containing icons for folders, files, and applications. This type of user 
interface also allows the user to manipulate images with a pointing device such as a mouse. A touchscreen interface 
supports more direct manipulation of these visual elements with gestures such as pinches and swipes of the user’s 
fingers. Devices that respond verbally and in other ways to verbal commands are also becoming widespread.

Another major type of software is called applications software, or simply apps. An application is a program that is 
designed for a specific task, such as editing a document or displaying a web page. Applications include web browsers, 
word processors, spreadsheets, database managers, graphic design packages, music production systems, and games, 
among millions of others. As you begin learning to write computer programs, you will focus on writing simple applications.

As you have learned, computer hardware can execute only instructions that are written in binary form—that is, in 
machine language. Writing a machine language program, however, would be an extremely tedious, error-prone task. To 
ease the process of writing computer programs, computer scientists have developed high-level programming languages 
for expressing algorithms. These languages resemble English and allow the author to express algorithms in a form 
that other people can understand.

A programmer typically starts by writing high-level language statements in a text editor. The programmer then 
runs another program called a translator to convert the high-level program code into executable code. Because it is 
possible for a programmer to make grammatical mistakes even when writing high-level code, the translator checks 
for syntax errors before it completes the translation process. If it detects any of these errors, the translator alerts the 
programmer via error messages. The programmer then has to revise the program. If the translation process succeeds 
without a syntax error, the program can be executed by the run-time system. The run-time system might execute the 
program directly on the hardware or run yet another program called an interpreter or virtual machine to execute the 
program. Figure 1-3 shows the steps and software used in the coding process.

Create high-level
language program

User inputs

Other error messages

Syntax error messages

Program
outputs

Text editor Translator

Run-time
system

Figure 1-3  Software used in the coding process

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.3  A Not-So-Brief History of Computing Systems 7

1.3  A Not-So-Brief History of Computing Systems
Now that you have in mind some of the basic ideas of computing and computer systems, let’s take a moment to 
examine how they have taken shape in history. Figure 1-4 summarizes some of the major developments in the history 
of computing. The discussion that follows provides more details about these developments.

Figure 1-4  Summary of major developments in the history of computing

Approximate Dates Major Developments

Before 1800 •	 Mathematicians discover and use algorithms

•	 Abacus used as a calculating aid

•	 First mechanical calculators built by Pascal and Leibniz

Nineteenth century •	 Jacquard’s loom

•	 Babbage’s Analytical Engine

•	 Boole’s system of logic

•	 Hollerith’s punch-card machine

1930s •	 Turing publishes results on computability

•	 Shannon’s theory of information and digital switching

1940s •	 First electronic digital computers

1950s •	 First symbolic programming languages

•	 Transistors make computers smaller, faster, more durable, and less expensive

•	 Emergence of data-processing applications

1960–1975 •	 Integrated circuits accelerate the miniaturization of hardware

•	 First minicomputers

•	 Time-sharing operating systems

•	 Interactive user interfaces with keyboard and monitor

•	 Proliferation of high-level programming languages

•	 Emergence of a software industry and the academic study of computer science

Exercise 1-2

1.	 List two examples of input devices and two examples of output devices.

2.	 What does the central processing unit (CPU) do?

3.	 How is information represented in hardware memory?

4.	 What is the difference between a terminal-based interface and a graphical user interface (GUI)?

5.	 What role do translators play in the programming process?

(continues)
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Approximate Dates Major Developments

1975–1990 •	 First microcomputers and mass-produced personal computers

•	 GUIs become widespread

•	 Networks and the Internet

1990–2000 •	 Optical storage for multimedia applications, images, sound, and video

•	 World Wide Web, web applications, and e-commerce

•	 Laptops

2000–present •	 Wireless computing, smartphones, and mobile applications

•	 Computers embedded and networked in an enormous variety of cars, household 
appliances, and industrial equipment

•	 Social networking and use of big data in finance and commerce

•	 Digital streaming of music and video

Before Electronic Digital Computers
Ancient mathematicians developed the first algorithms. The word algorithm comes from the name of a Persian 
mathematician, Muhammad ibn Musa al-Khwarizmi, who wrote several mathematics textbooks in the ninth century. 
About 2300 years ago, the Greek mathematician Euclid, the inventor of geometry, developed an algorithm for computing 
the greatest common divisor of two numbers.

A device known as the abacus also appeared in ancient times. The abacus helped people perform simple arithmetic. 
Users calculated sums and differences by sliding beads on a grid of wires (see Figure 1-5a). The configuration of beads 
on the abacus served as the data.

In the seventeenth century, the French mathematician Blaise Pascal (1623–1662) built one of the first mechanical 
devices to automate the process of addition (see Figure 1-5b). The addition operation was embedded in the configuration 
of gears within the machine. The user entered the two numbers to be added by rotating some wheels. The sum or output 
number appeared on another rotating wheel. The German mathematician Gottfried Wilhelm Leibniz (1646–1716) built 
another mechanical calculator that included other arithmetic functions such as multiplication. Leibniz, who invented 
calculus concurrently with Newton, went on to propose the idea of computing with symbols as one of our most basic 
intellectual activities. He argued for a universal language in which one could solve any problem by calculating.

Early in the nineteenth century, the French engineer Joseph-Marie Jacquard (1752–1834) designed and constructed 
a machine that automated the process of weaving (see Figure 1-5c). Until then, each row in a weaving pattern had to 
be set up by hand, a quite tedious, error-prone process. Jacquard’s loom was designed to accept input in the form of 
a set of punched cards. Each card described a row in a pattern of cloth. Although it was still an entirely mechanical 
device, Jacquard’s loom possessed something that previous devices had lacked—the ability to execute an algorithm 
automatically. The set of cards expressed the algorithm or set of instructions that controlled the behavior of the 
loom. If the loom operator wanted to produce a different pattern, he just had to run the machine with a different 
set of cards.

The British mathematician Charles Babbage (1792–1871) took the concept of a programmable computer a step 
further by designing a model of a machine that, conceptually, bore a striking resemblance to a modern general-
purpose computer. Babbage conceived his machine, which he called the Analytical Engine, as a mechanical device. 
His design called for four functional parts: a mill to perform arithmetic operations, a store to hold data and a program, 
an operator to run the instructions from punched cards, and an output to produce the results on punched cards. 
Sadly, Babbage’s computer was never built. The project perished for lack of funds near the time when Babbage 
himself passed away.

Figure 1-4  Summary of major developments in the history of computing  (continued)
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1.3  A Not-So-Brief History of Computing Systems 9

In the last two decades of the nineteenth century, a U.S. Census Bureau statistician named Herman Hollerith 
(1860–1929) developed a machine that automated data processing for the U.S. Census. Hollerith’s machine, which 
had the same component parts as Babbage’s Analytical Engine, simply accepted a set of punched cards as input and 
then tallied and sorted the cards. His machine greatly shortened the time it took to produce statistical results on the 
U.S. population. Government and business organizations seeking to automate their data processing quickly adopted 
Hollerith’s punched card machines. Hollerith was also one of the founders of a company that eventually became 
International Business Machines (IBM).

Also in the nineteenth century, the British secondary school teacher George Boole (1815–1864) developed a system 
of logic. This system consisted of a pair of values, TRUE and FALSE, and a set of three primitive operations on these 
values, AND, OR, and NOT. Boolean logic eventually became the basis for designing the electronic circuitry to process 
binary information.

A half century later, in the 1930s, the British mathematician Alan Turing (1912–1954) explored the theoretical 
foundations and limits of algorithms and computation. Turing’s essential contributions were to develop the concept 
of a universal machine that could be specialized to solve any computable problems and to demonstrate that some 
problems are unsolvable by computers.

Figure 1-5  Some early computing devices
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(b) Pascal’s Calculator (c) Jacquard’s Loom
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