
Fundamentals
of Python First

Programs

Kenneth A. Lambert

Third Edition

Fundamentals
of Python
First Programs
Third Edition

Kenneth A. Lambert

Australia • Brazil • Canada • Mexico • Singapore • United Kingdom • United States

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

© 2024 Cengage Learning, Inc. ALL RIGHTS RESERVED.

Previous edition(s): © 2015, © 2012.

No part of this work covered by the copyright herein may be reproduced
or distributed in any form or by any means, except as permitted by U.S.
copyright law, without the prior written permission of the copyright owner.

Unless otherwise noted, all content is Copyright © Cengage Learning, Inc.

The names of all products mentioned herein are used for identification
purposes only and may be trademarks or registered trademarks of their
respective owners. Cengage Learning disclaims any affiliation, association,
connection with, sponsorship, or endorsement by such owners.

For product information and technology assistance, contact us at
Cengage Customer & Sales Support, 1-800-354-9706

or support.cengage.com.

For permission to use material from this text or product, submit all
requests online at www.copyright.com.

Library of Congress Control Number: 2023904384

ISBN: 978-0-357-88101-9

Cengage
200 Pier 4 Boulevard
Boston, MA 02210
USA

Cengage is a leading provider of customized learning solutions.
Our employees reside in nearly 40 different countries and serve digital
learners in 165 countries around the world. Find your local representative at:
www.cengage.com.

To learn more about Cengage platforms and services, register or access
your online learning solution, or purchase materials for your course,
visit www.cengage.com.

Fundamentals of Python: First Programs,

Third Edition

Kenneth A. Lambert

SVP, Product: Cheryl Costantini

VP, Product: Thais Alencar

Portfolio Product Director: Rita Lombard

Portfolio Product Manager: Tran Pham

Product Assistant: Anh Nguyen

Learning Designer: Mary Convertino

Senior Content Manager: Michelle Ruelos

Cannistraci

Digital Project Manager: John Smigelski

Technical Editor: Danielle Shaw

Developmental Editor: Spencer Peppet

VP, Product Marketing: Jason Sakos

Director, Product Marketing: Danae April

Product Marketing Manager: Mackenzie Paine

Content Acquisition Analyst: Ann Hoffman

Production Service: Straive

Designer: Erin Griffin

Cover Image Source: Armagadon/shutterstock.com

Printed in the United States of America
Print Number: 01	 Print Year: 2023

Notice to the Reader

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection
with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain
and include information other than that provided to it by the manufacturer. The reader is expressly warned to consider and adopt
all safety precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following
the instructions contained herein, the reader willingly assumes all risks in connection with such instructions. The publisher makes
no representations or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose or
merchantability, nor are any such representations implied with respect to the material set forth herein, and the publisher takes no
responsibility with respect to such material. The publisher shall not be liable for any special, consequential, or exemplary damages
resulting, in whole or part, from the readers’ use of, or reliance upon, this material.

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WCN: 02-300

Brief Contents

About the Author� xi
Preface� xiii

Chapter 1 Introduction��1

Chapter 2 Software Development, Data Types, and Expressions������������������������������27

Chapter 3 Loops and Selection Statements��53

Chapter 4 Strings and Text Files���87

Chapter 5 Lists and Dictionaries��115

Chapter 6 Design with Functions���145

Chapter 7 Design with Recursion���165

Chapter 8 Simple Graphics and Image Processing��189

Chapter 9 Graphical User Interfaces���223

Chapter 10 Design with Classes���265

Chapter 11 Data Analysis and Visualization���321

Chapter 12 Multithreading, Networks, and Client/Server Programming����������������357

Chapter 13 Searching, Sorting, and Complexity Analysis���393

Appendix A Python Resources���429

Appendix B Installing the images and breezypythongui Libraries���������������������431

Appendix C The API for Image Processing��433

Appendix D Transition from Python to Java and C++��435

Appendix E Suggestions for Further Reading�� 437

Glossary� 439
Index� 453

iii

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

iv

Contents

About the Author	 xi

Preface	 xiii

Chapter 1

Introduction	 1

1.1 �Two Fundamental Ideas of
Computer Science: Algorithms and
Information Processing� 1

Algorithms	 2

Information Processing	 3

1.2 �The Structure of a Modern
Computer System� 4

Computer Hardware	 4

Computer Software	 5

1.3 �A Not-So-Brief History of
Computing Systems� 7

Before Electronic Digital Computers	 8

Human Beings as Computers (1940–1945)	 10

The First Electronic Digital Computers (1940–1950)	10

The First Programming Languages (1950–1965)	 11

Integrated Circuits, Interaction, Time-Sharing, and
Software Engineering (1965–1975)	 12

Personal Computing and Networks (1975–1990)	 12

Consultation, Communication, and E-Commerce
(1990–2000)	 14

Mobile Applications and Ubiquitous Computing
(2000–present)	 15

1.4 �Getting Started with Python
Programming� 16

Running Code in the Interactive Shell	 16

Input, Processing, and Output	 18

Editing, Saving, and Running a Script	 19

Behind the Scenes: How Python Works	 20

Detecting and Correcting Syntax Errors	 21

Summary	 22

Key Terms	 23

Review Questions	 24

Programming Exercises	 25

Debugging Exercise	 25

Chapter 2

Software Development, Data Types, and Expressions	 27

2.1 �The Software Development
Process� 27

2.2 �Strings, Assignment, and
Comments� 32

Data Types	 33

String Literals	 33

Escape Sequences	 34

String Concatenation	 34

Variables and the Assignment Statement	 35

Program Comments and Docstrings	 36

2.3 �Numeric Data Types and
Character Sets� 37

Integers	 37

Floating-Point Numbers	 37

Character Sets	 38

2.4 Expressions	 39
Arithmetic Expressions	 39

Mixed-Mode Arithmetic and Type Conversions	 41

2.5 Using Functions and Modules	 43
Calling Functions: Arguments and Return Values	 43

iv

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The math Module	 44

The Main Module	 45

Program Format and Structure	 46

Running a Script from a Terminal
Command Prompt	 46

Summary	 48

Key Terms	 49

Review Questions	 49

Programming Exercises	 50

Debugging Exercise	 51

Chapter 3

Loops and Selection Statements	 53

3.1 Definite Iteration: The for Loop	 53
Executing a Statement a Given Number of Times	 54

Count-Controlled Loops	 55

Augmented Assignment	 56

Loop Errors: Off-by-One Error	 56

Traversing the Contents of a Data Sequence	 57

Specifying the Steps in the Range	 57

Loops That Count Down	 58

3.2 Formatting Text for Output	 58

3.3 �Selection: if and if-else
Statements� 64

The Boolean Type, Comparisons, and Boolean
Expressions	 64

if-else Statements	 65

One-Way Selection Statements	 66

Multiway if Statements	 67

Logical Operators and Compound Boolean
Expressions	 68

Short-Circuit Evaluation	 70

Testing Selection Statements	 70

3.4 �Conditional Iteration: The while
Loop� 71

The Structure and Behavior of a while Loop	 72

Count Control with a while Loop	 73

The while True Loop and the break
Statement	 74

Random Numbers	 75

Loop Logic, Errors, and Testing	 76

Summary	 81

Key Terms	 82

Review Questions	 82

Programming Exercises	 84

Debugging Exercise	 86

Chapter 4

Strings and Text Files	 87

4.1 �Accessing Characters and
Substrings in Strings� 87

The Structure of Strings	 87

The Subscript Operator	 88

Slicing for Substrings	 89

Testing for a Substring with in Operator	 90

4.2 Data Encryption	 91

4.3 Strings and Number Systems	 93
The Positional System for Representing
Numbers	 93

Converting Binary to Decimal	 94

Converting Decimal to Binary	 95

Conversion Shortcuts	 95

Octal and Hexadecimal Numbers	 96

4.4 String Methods	 97

4.5 Text Files	 100
Text Files and Their Format	 100

Writing Text to a File	 101

Writing Numbers to a File	 101

Reading Text from a File	 101

vContents

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Reading Numbers from a File	 102

Accessing and Manipulating Files and
Directories on Disk	 104

Summary	 111

Key Terms	 112

Review Questions	 112

Programming Exercises	 113

Debugging Exercise	 114

Chapter 5

Lists and Dictionaries	 115

5.1 Lists	 115
List Literals and Basic Operators	 116

Replacing an Element in a List	 118

List Methods for Inserting and Removing
Elements	 119

Searching a List	 120

Sorting a List	 121

Mutator Methods and the Value None	 121

Aliasing and Side Effects	 122

Equality: Object Identity and Structural
Equivalence	 123

Example: Using a List to Find the Median of
a Set of Numbers	 123

Tuples	 124

5.2 Defining Simple Functions	 126
The Syntax of Simple Function Definitions	 126

Parameters and Arguments	 127

The return Statement	 127

Boolean Functions	 127

Defining a main Function	 127

5.3 Dictionaries	 132
Dictionary Literals	 132

Adding Keys and Replacing Values	 132

Accessing Values	 133

Removing Keys	 133

Traversing a Dictionary	 133

Example: The Hexadecimal System Revisited	 134

Example: Finding the Mode of a List
of Values	 135

Summary	 141

Key Terms	 142

Review Questions	 142

Programming Exercises	 143

Debugging Exercise	 144

Chapter 6

Design with Functions	 145

6.1 �A Quick Review of What Functions
Are and How They Work� 145

Functions as Abstraction Mechanisms	 146

Functions Eliminate Redundancy	 146

Functions Hide Complexity	 147

Functions Support General Methods with
Systematic Variations	 147

Functions Support the Division of Labor	 148

6.2 �Problem Solving with
Top-Down Design� 148

The Design of the Text Analysis Program	 148

The Design of the Sentence Generator Program	 149

The Design of the Doctor Program	 150

6.3 �Managing a Program’s
Namespace� 156

Module Variables, Parameters, and
Temporary Variables	 156

Scope	 157

Lifetime	 157

Using Keywords for Default and Optional
Arguments	 158

Summary	 161

Key Terms	 161

Review Questions	 162

Programming Exercises	 163

Debugging Exercise	 164

vi ﻿Contents

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7

Design with Recursion	 165

7.1 Design with Recursive Functions	 165
Defining a Recursive Function	 166

Recursive Algorithms	 167

Tracing a Recursive Function	 167

Using Recursive Definitions to Construct
Recursive Functions	 168

Recursion in Sentence Structure	 168

Infinite Recursion	 170

The Costs and Benefits of Recursion	 170

7.2 Higher-Order Functions	 179
Functions as First-Class Data Objects	 179

Mapping	 180

Filtering	 181

Reducing	 181

Using lambda to Create Anonymous Functions	 182

Creating Jump Tables	 182

Summary	 185

Key Terms	 185

Review Questions	 186

Programming Exercises	 187

Debugging Exercise	 188

Chapter 8

Simple Graphics and Image Processing	 189

8.1 Simple Graphics	 189
Overview of Turtle Graphics	 190

Turtle Operations	 190

Setting Up a turtle.cfg File and Running IDLE	 192

Object Instantiation and the turtle Module	 192

Drawing Two-Dimensional Shapes	 194

Examining an Object’s Attributes	 195

Manipulating a Turtle’s Screen	 196

Taking a Random Walk	 196

Colors and the RGB System	 197

Example: Filling Radial Patterns with Random
Colors	 198

8.2 Image Processing	 203
Analog and Digital Information	 204

Sampling and Digitizing Images	 204

Image File Formats	 204

Image-Manipulation Operations	 205

The Properties of Images	 205

The images Module	 205

A Loop Pattern for Traversing a Grid	 208

A Word on Tuples	 209

Converting an Image to Black and White	 209

Converting an Image to Grayscale	 210

Copying an Image	 211

Blurring an Image	 212

Edge Detection	 213

Reducing the Image Size	 214

Summary	 216

Key Terms	 217

Review Questions	 217

Programming Exercises	 218

Debugging Exercise	 221

Chapter 9

Graphical User Interfaces	 223

9.1 �The Behavior of Terminal-Based
Programs and GUI-Based
Programs� 224

The Terminal-Based Version	 224

The GUI-Based Version	 225

Event-Driven Programming	 226

9.2 �Coding Simple GUI-Based
Programs� 226

A Simple “Hello World” Program	 227

A Template for All GUI Programs	 228

The Syntax of Class and Method Definitions	 228

Subclassing and Inheritance as Abstraction
Mechanisms	 229

viiContents ﻿

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.3 �Windows and Window
Components� 229

Windows and Their Attributes	 230

Window Layout	 230

Types of Window Components and Their
Attributes	 232

Displaying Images	 233

9.4 �Command Buttons and
Responding to Events� 235

9.5 �Input and Output with Entry
Fields� 237

Text Fields	 237

Integer and Float Fields for Numeric Data	 238

9.6 �Defining and Using Instance
Variables� 240

9.7 �Other Useful GUI Resources	 246

Using Nested Frames to Organize

Components	 247

Multiline Text Areas	 248

File Dialogs	 250

Obtaining Input with Prompter Boxes	 252

Check Buttons	 253

Radio Buttons	 254

Keyboard Events	 256

Working with Colors	 256

Using a Color Chooser	 258

Summary	 260

Key Terms	 260

Review Questions	 261

Programming Exercises	 262

Debugging Exercise	 263

Chapter 10

Design with Classes	 265

10.1 �Getting Inside Objects and
Classes� 266

A First Example: The Student Class	 266

Docstrings	 268

Method Definitions	 269

The __init__ Method and Instance
Variables	 269

The __str__ Method	 269

Accessors and Mutators	 270

The Lifetime of Objects	 270

Rules of Thumb for Defining a
Simple Class	 271

10.2 Data-Modeling Examples	 279
Rational Numbers	 279

Rational Number Arithmetic and Operator
Overloading	 281

Comparison Methods	 282

Equality and the __eq__ Method	 282

The __repr__ Method for Printing an Object
in IDLE	 283

Savings Accounts and Class Variables	 284

Putting the Accounts into a Bank	 286

Using pickle for Permanent Storage
of Objects	 288

Input of Objects and the try-except
Statement	 289

Playing Cards	 290

10.3 �Building a New Data Structure:
The Two-Dimensional Grid� 298

The Interface of the Grid Class	 298

The Implementation of the Grid Class:
Instance Variables for the Data	 300

The Implementation of the Grid Class:
Subscript and Search	 301

10.4 �Structuring Classes with
Inheritance and Polymorphism� 305

Inheritance Hierarchies and Modeling	 305

Example 1: A Restricted Savings Account	 306

Example 2: The Dealer and a Player in the
Game of Blackjack	 308

Polymorphic Methods	 312

The Costs and Benefits of Object-Oriented
Programming	 312

Summary	 315

Key Terms	 316

Review Questions	 317

Programming Exercises	 318

Debugging Exercise	 320

viii Contents

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11

Data Analysis and Visualization	 321

11.1 �Some Basic Functions for
Analyzing a Data Set� 322

Computing the Maximum, Minimum, and Mean	 323

Computing the Median	 323

Computing the Mode and Modes	 324

Computing the Standard Deviation	 325

Using the NumPy Library	 326

11.2 Visualizing a Data Set	 333
Pie Charts	 335

Bar Charts	 337

Scatter Plots	 339

Line Plots	 340

Histograms	 342

11.3 �Working with More Complex
Data Sets� 343

Creating a Data Set with pandas	 344

Visualizing Data with pandas and
matplotlib.pyplot	 344

Accessing Columns and Rows in a Data Frame	 345

Creating a Data Frame from a CSV File	 346

Cleaning the Data in a Data Frame	 347

Accessing Other Attributes of a Data Frame	 348

Summary	 354

Key Terms	 354

Review Questions	 354

Programming Exercises	 355

Chapter 12

Multithreading, Networks, and Client/Server Programming	 357

12.1 Threads and Processes	 357
Threads	 358

Sleeping Threads	 360

Producer, Consumer, and Synchronization	 362

12.2 �The Readers and Writers
Problem� 368

Using the SharedCell Class	 369

Implementing the Interface of the SharedCell
Class	 370

Implementing the Helper Methods of the
SharedCell Class	 371

Testing the SharedCell Class with
a Counter Object	 372

Defining a Thread-Safe Class	 373

12.3 �Networks, Clients, and
Servers� 374

IP Addresses	 374

Ports, Servers, and Clients	 375

Sockets and a Day/Time Client Script	 375

A Day/Time Server Script	 377

A Two-Way Chat Script	 379

Handling Multiple Clients Concurrently	 380

Summary	 388

Key Terms	 389

Review Questions	 389

Programming Exercises	 390

Debugging Exercise	 392

Chapter 13

Searching, Sorting, and Complexity Analysis	 393

13.1 �Measuring the Efficiency of
Algorithms� 394

Measuring the Run Time of an Algorithm	 394

Counting Instructions	 396

13.2 Complexity Analysis� 398
Orders of Complexity	 398

Big-O Notation	 400

ixContents

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Role of the Constant of Proportionality	 400

Measuring the Memory Used by an Algorithm	 400

13.3 Search Algorithms� 401
Search for a Minimum	 401

Sequential Search of a List	 402

Best-Case, Worst-Case, and Average-Case
Performance	 403

Binary Search of a List	 403

13.4 Basic Sort Algorithms� 405
Selection Sort	 405

Bubble Sort	 406

Insertion Sort	 408

Best-Case, Worst-Case, and Average-Case
Performance Revisited	 409

13.5 Faster Sorting� 409

Quicksort	 410

Partitioning	 410

Complexity Analysis of Quicksort	 410

Implementation of Quicksort	 411

Merge Sort	 413

Implementing the Merging Process	 413

Complexity Analysis of Merge Sort	 416

13.6 �An Exponential Algorithm:
Recursive Fibonacci� 416

Converting Fibonacci to a Linear Algorithm	 417

Summary	 423

Key Terms	 424

Review Questions	 424

Programming Exercises	 425

Appendix A

Python Resources	 429

Appendix B

Installing the images and breezypythongui Libraries	 431

Appendix C

The API for Image Processing	 433

Appendix D

Transition from Python to Java and C++	 435

Appendix E

Suggestions for Further Reading	 437

Glossary� 439

Index� 453

x Contents

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Kenneth A. Lambert is Professor of Computer Science Emeritus at Washington and Lee University. He taught
introductory programming courses for 37 years and has been an active researcher in computer science educa-
tion. Lambert has co-authored a series of introductory C++ textbooks with Douglas Nance and Thomas Naps
and a series of introductory Java textbooks with Martin Osborne. He is the author of Python textbooks for CS1
and CS2 college-level courses and a Python textbook for teens. He is also the co-creator of the BreezySwing
framework and is the creator of the breezypythongui framework.

Dedication
To my grandchildren—Lucy, Wyatt, Cuba, and Van

Kenneth A. Lambert

Lexington, VA

About the Author

xi

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

“Everyone should learn how to code.” That’s my favorite quote from Suzanne Keen, formerly the Thomas
Broadus Professor of English and Dean of the College at Washington and Lee University, where I have taught
computer science for more than 30 years. The quote also states the reason why I wrote the first and second
editions of Fundamentals of Python: First Programs, and why I now offer you this third edition. The book is
intended for an introductory course in programming and problem solving. It covers the material taught in a
typical Computer Science 1 (CS1) course at the undergraduate or high school level.

This book covers five major aspects of computing:

1.	 Programming basics—Data types, control structures, algorithm development, and program
design with functions are basic ideas that you need to master in order to solve problems with
computers. This book examines these core topics in detail and gives you practice employing your
understanding of them to solve a wide range of problems.

2.	 Object-oriented programming (OOP)—Object-oriented programming is the dominant programming
paradigm used to develop large software systems. This book introduces you to the fundamental
principles of OOP and enables you to apply them successfully.

3.	 Data and information processing—Most useful programs rely on data structures to solve
problems. These data structures include strings, arrays, files, lists, and dictionaries. This book
introduces you to these commonly used data structures and includes examples that illustrate
criteria for selecting the appropriate data structures for given problems.

4.	 Software development life cycle—Rather than isolate software development techniques in one
or two chapters, this book deals with them throughout in the context of numerous case studies.
Among other things, you’ll learn that coding a program is often not the most difficult or challenging
aspect of problem solving and software development.

5.	 Contemporary applications of computing—The best way to learn about programming and
problem solving is to create interesting programs with real-world applications. In this book, you’ll
begin by creating applications that involve numerical problems and text processing. For example,
you’ll learn the basics of encryption techniques, such as those that are used to make your credit
card number and other information secure on the Internet. But unlike many other introductory
texts, this one does not restrict itself to problems involving numbers and text. Most contemporary
applications involve graphical user interfaces, event-driven programming, graphics, image
manipulation, network communications, and data analysis. These topics are not consigned to the
margins but are presented in depth after you have mastered the basics of programming.

Why Python?
Computer technology and applications have become increasingly more sophisticated over the past three
decades, and so has the computer science curriculum, especially at the introductory level. Today’s students
learn a bit of programming and problem solving and are then expected to move quickly into topics like software
development, complexity analysis, and data structures that 35 years ago were relegated to advanced courses.
In addition, the ascent of object-oriented programming as the dominant paradigm of problem solving has led
instructors and textbook authors to implant powerful, industrial-strength programming languages such as

Preface

xiii

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C++ and Java in the introductory curriculum. As a result, instead of experiencing the rewards and excitement of solving
problems with computers, beginning computer science students often become overwhelmed by the combined tasks
of mastering advanced concepts as well as the syntax of a programming language.

This book uses the Python programming language as a way of making the first year of studying computer science
more manageable and attractive for students and instructors alike. Python has the following pedagogical benefits:

	• Python has simple, conventional syntax. Python statements are very close to those of pseudocode algorithms,
and Python expressions use the conventional notation found in algebra. Thus, students can spend less time
learning the syntax of a programming language and more time learning to solve interesting problems.

	• Python has safe semantics. Any expression or statement whose meaning violates the definition of the language
produces an error message.

	• Python scales well. It is very easy for beginners to write simple programs in Python. Python also includes all
of the advanced features of a modern programming language, such as support for data structures and object-
oriented software development, for use when they become necessary.

	• Python is highly interactive. Expressions and statements can be entered at an interpreter’s prompts to allow the
programmer to try out experimental code and receive immediate feedback. Longer code segments can then be
composed and saved in script files to be loaded and run as modules or standalone applications.

	• Python is general purpose. In today’s context, this means that the language includes resources for
contemporary applications, including media computing and networks.

	• Python is free and is in widespread use in industry. Students can download Python to run on a variety of
devices. There is a large Python user community, and expertise in Python programming has great résumé value.

To summarize these benefits, Python is a comfortable and flexible vehicle for expressing ideas about computation,
both for beginners and for experts. If students learn these ideas well in the first course, they should have no problems
making a quick transition to other languages needed for courses later in the curriculum. Most importantly, beginning
students will spend less time staring at a computer screen and more time thinking about interesting problems to solve.

Organization of the Text
The approach of this text is easygoing, with each new concept introduced only when it is needed.

Chapter 1 introduces computer science by focusing on two fundamental ideas, algorithms and information pro-
cessing. A brief overview of computer hardware and software, followed by an extended discussion of the history of
computing, sets the context for computational problem solving.

Chapters 2 and 3 cover the basics of problem solving and algorithm development using the standard control
structures of expression evaluation, sequencing, Boolean logic, selection, and iteration with the basic numeric data
types. Emphasis in these chapters is on problem solving that is both systematic and experimental, involving algorithm
design, testing, and documentation.

Chapters 4 and 5 introduce the use of the strings, text files, lists, and dictionaries. These data structures are both
remarkably easy to manipulate in Python and support some interesting applications. Chapter 5 also introduces simple
function definitions as a way of organizing algorithmic code.

Chapter 6 explores the technique and benefits of procedural abstraction with function definitions. Top-down design
and stepwise refinement with functions are examined as means of structuring code to solve complex problems. Details
of namespace organization (parameters, temporary variables, and module variables) and communication among soft-
ware components are discussed.

Chapter 7 examines recursive design with functions. A section on functional programming with higher-order func-
tions shows how to exploit functional design patterns to simplify solutions.

Prefacexiv

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 focuses on the use of existing objects and classes to compose programs. Special attention is paid to
the application programming interface (API), or set of methods, of a class of objects and the manner in which objects
cooperate to solve problems. This chapter also introduces two contemporary applications of computing: graphics and
image processing. These are areas in which object-based programming is particularly useful.

Chapter 9 introduces the definition of new classes to construct graphical user interfaces (GUIs). The chapter
contrasts the event-driven model of GUI programs with the process-driven model of terminal-based programs. The
chapter explores the creation and layout of GUI components, as well as the design of GUI-based applications using
the model/view pattern. The initial approach to defining new classes in this chapter is unusual for an introductory
textbook: students learn that the easiest way to define a new class is to customize an existing class using subclassing
and inheritance.

Chapter 10 continues the exploration of object-oriented design with the definition of entirely new classes. Several
examples of simple class definitions from different application domains are presented. Some of these are then inte-
grated into more realistic applications to show how object-oriented software components can be used to build complex
systems. Emphasis is on designing appropriate interfaces for classes that exploit polymorphism.

Chapter 11 introduces tools and techniques for performing data analysis, a fast-growing application area of com-
puter science. Topics include the acquisition and cleaning of data sets, applying functions to determine relationships
among data, and deploying graphs, plots, and charts to visualize these relationships.

Chapter 12 covers advanced material related to several important areas of computing: concurrent programming,
networks, and client/server applications. This chapter thus gives students challenging experiences near the end of the
first course. This chapter introduces multithreaded programs and the construction of simple network-based client/
server applications.

Chapter 13 covers some topics addressed at the beginning of a traditional CS2 course. This chapter introduces
complexity analysis with big-O notation. Enough material is presented to enable you to perform simple analyses of
the running time and memory usage of algorithms and data structures, using search and sort algorithms as examples.

New to This Edition
The third edition includes the following new or updated content and features:

	• A new chapter (Chapter 7) on design with recursion. This chapter incorporates and expands on material on
recursive functions and higher-order functions from Chapter 6 of the second edition.

	• A new chapter (Chapter 11) on data analysis and visualization. This chapter introduces tools and techniques
for acquiring data sets, cleaning them, and applying functions to them to determine relationships which can be
visualized in plots, charts, and graphs.

	• Updated coverage of the history of computing in Chapter 1.

	• New fail-safe programming sections added to most chapters to demonstrate best practices for programming
securely.

	• New list of key terms in each chapter.

	• Updated end-of-chapter review questions and programming exercises.

	• End-of-chapter programming exercises mapped to the learning objectives for each chapter.

	• New debugging exercises in each chapter provide examples of challenging programming errors and give you
experience in diagnosing and correcting them.

	• Several new case studies as well as new or updated programming exercises.

	• Text revisions throughout with a focus on readability.

Preface xv

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Features of the Text
This book explains and develops concepts carefully, using frequent examples and diagrams. New concepts are then
applied in complete programs to show how they aid in solving problems. The chapters place an early and consistent
emphasis on good writing habits and neat, readable documentation.

The book includes several other important features:

	• Chapter Objectives: Each chapter begins with a set of learning objectives which describe the skills and
concepts you will acquire from a careful reading of the chapter.

	• Chapter Summary: Each chapter ends with a summary of the major concepts covered in the chapter.

	• Key Terms: When a technical term is introduced in the text, it appears in boldface. The list of terms appears
after the chapter summary. Definitions of the key terms are provided in the glossary.

Case Study

Case Studies: The Case Studies present complete Python programs ranging from the simple to the
substantial. To emphasize the importance and usefulness of the software development life cycle, case
studies are discussed in the framework of a user request, followed by analysis, design, implementation, and
suggestions for testing, with well-defined tasks performed at each stage. Some case studies are extended in
end-of-chapter programming exercises.

Exercise

Exercises: Most major sections of each chapter end with exercise questions that reinforce the reading by asking
basic questions about the material in the section.

Fail-Safe Programming

Fail-Safe Programming: Fail-Safe Programming sections include a discussion of ways to make a program
detect and respond gracefully to disturbances in its runtime environment.

Prefacexvi

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions

Review Questions: Multiple-choice review questions allow you to revisit the concepts presented in each
chapter.

Programming Exercises

Programming Exercises: Each chapter ends with a set of programming projects of varying difficulty. Each
programming exercise is mapped to one or more relevant chapter learning objectives and gives you the
opportunity to design and implement a complete program that utilizes major concepts presented in that
chapter.

Debugging Exercises

Debugging Exercises: Debugging exercises illustrate a typical program error with suggestions for repairing it.

	• A software toolkit for image processing: This book comes with an open-source Python toolkit for the easy
image processing discussed in Chapter 8. The toolkit can be obtained with the ancillaries at www.cengage.com
or at https://kennethalambert.com/python/

	• A software toolkit for GUI programming: This book comes with an open-source Python toolkit for the easy GUI
programming introduced in Chapter 9. The toolkit can be obtained with the ancillaries at www.cengage.com or
at https://kennethalambert.com/breezypythongui/

	• Appendices: Five appendices include information on obtaining Python resources, installing the toolkits, using
the toolkits’ interfaces, and suggestions for further reading.

	• Glossary: Definitions of key terms are collected in a glossary.

Inclusivity and Diversity
Cengage is committed to providing educational content that is inclusive and welcoming to all learners. Research
demonstrates that students who experience a sense of belonging in class more successfully make meaning out of, and
find relevance in, what they encounter in learning content. To improve both the learning process and outcomes, our

Preface xvii

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

materials seek to affirm the fullness of human diversity with respect to ability, language, culture, gender, age, socio-
economics, and other forms of human difference that students may bring to the classroom.

Across the computing industry, standard coding language, such as “Master” and “Slave” is being retired in favor of lan-
guage that is more inclusive, such as “Supervisor/Worker,” “Primary/Replica,” or “Leader/Follower.” At this time, different
software development and social media companies are adopting their own replacement language and currently there is no
shared standard. In addition, the terms “Master” and “Slave” remain deeply embedded in legacy code and understanding
this terminology remains necessary for new programmers. When required for understanding, Cengage will introduce the
non-inclusive term in the first instance but will then provide an appropriate replacement terminology for the remainder of
the discussion or example. We appreciate your feedback as we work to make our products more inclusive for all.

For more information about Cengage’s commitment to inclusivity and diversity, please visit https://www.cengage
.com/inclusion-diversity/

Course Solutions
Online Learning Platform: MindTap
Today’s leading online learning platform, MindTap for Fundamentals of Python, Third Edition provides complete con-
trol to craft a personalized, engaging learning experience that challenges students, builds confidence, and elevates
performance.

MindTap introduces students to core concepts from the beginning of the course, using a simplified learning path
that progresses from understanding to application and delivers access to eTextbooks, study tools, interactive media,
auto-graded assessments, and performance analytics.

MindTap activities for Fundamentals of Python: First Programs are designed to help students build the skills needed
in today’s workforce. Research shows employers seek critical thinkers, troubleshooters, and creative problem-solvers
to stay relevant in our fast-paced, technology-driven world. MindTap achieves this with assignments and activities
that provide hands-on practice and real-life relevance. Students are guided through assignments that reinforce basic
knowledge and understanding before moving on to more challenging problems.

All MindTap activities and assignments are tied to defined chapter learning objectives. Hands-on coding labs pro-
vide real-life application and practice. Readings and dynamic visualizations support the lecture, while a post-course
assessment measures exactly how much a student has learned. MindTap provides the analytics and reporting to easily
see where the class stands in terms of progress, engagement, and completion rates. The content and learning path
can be used as provided, customized directly in the MindTap platform, or integrated into the Learning Management
System (LMS) to meet the needs of a particular course . Instructors can control what students see and when they see
it. Learn more at https://www.cengage.com/mindtap.

In addition to the readings, the MindTap for Fundamentals of Python: First Programs, Third Edition includes the following:

	• Coding labs. These supplemental assignments provide real-world application and encourage students to
practice new programming concepts in a complete online IDE. New and improved Guided Feedback provides
personalized and immediate feedback to students as they proceed through their coding assignments so that
they can understand and correct errors in their code.

	• Gradeable assessments and activities. All assessments and activities from the readings are available as
gradeable assignments within MindTap, including Exercises and Review Questions.

	• Video quizzes. These graded assessments provide a visual explanation of foundational programming concepts
that can be applied across multiple languages. Questions accompany each video to confirm understanding of
new material.

Prefacexviii

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	• Interactive activities. These embedded interactive flowcharts, tabbed explorations, and click-to-reveal
experiences are designed to engage students and help them assess their understanding of introductory
computer science concepts as they progress through their chapter readings.

	• Interactive study aids. Flashcards and PowerPoint lectures help users review main concepts from the units.

Supplemental Package
Instructor and Student Resources
Additional instructor and student resources for this product are available online.

Instructor assets include an Instructor’s Manual, Educator’s Guide, PowerPoint® slides, and a test bank powered
by Cognero®. Student assets include data sets. Sign up or sign in at www.cengage.com to search for and access this
product and its online resources.

	• Instructor Manual. The Instructor Manual that accompanies this textbook includes additional instructional
material to assist in class preparation, including items such as Overviews, Chapter Objectives, Teaching Tips,
Quick Quizzes, Class Discussion Topics, Additional Projects, Additional Resources, and Key Terms.

	• Test Bank. Cengage Testing Powered by Cognero is a flexible, online system that allows you to:

	■ Author, edit, and manage test bank content from multiple Cengage solutions.

	■ Create multiple test versions in an instant.

	■ Deliver tests from your LMS, your classroom, or wherever you want.

	• PowerPoint Presentations. This text provides PowerPoint slides to accompany each chapter. Slides may
be used to guide classroom presentations, to make available to students for chapter review, or to print as
classroom handouts. Files are provided for every figure in the text. Instructors may use the files to customize
PowerPoint slides, illustrate quizzes, or create handouts.

	• Solution and Answer Guide. Solutions and rationales to review questions and exercises are provided to assist
with grading and student understanding.

	• Solutions. Solutions to all programming exercises and case studies are available. If an input file is needed to run
a programming exercise, it is included with the solution file.

	• Data Files. Data files necessary to complete some of the steps in the programming exercises are available. If an
input file is needed to run a program, it is included with the source code.

	• Educator’s Guide. The Educator’s Guide contains a detailed outline of the corresponding MindTap course.

	• Transition Guide. The Transition Guide outlines information on what has changed from the Second Edition.

Supplements can be found at https://faculty.cengage.com/. Sign In or create an account, then search for this title.
You can save the title for easy access and then download the resources that you need.

Acknowledgments
I would like to thank my good friend, Martin Osborne, for many years of advice, friendly criticism, and encourage-
ment on several of my book projects. I am also grateful to the many students and faculty colleagues at Washington
and Lee University who have used earlier editions of this book and given helpful feedback on it over the life of those
editions.

Preface xix

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In addition, I would like to thank the following reviewers for the time and effort they contributed to Fundamentals
of Python: Eric Williamson, Liberty University and Jason Carman, Horry, Georgetown Technical College.

Thank you also to Danielle Shaw, who helped to assure that the content of all data and solution files used for this
text were correct and accurate.

Finally, thanks to the individuals at Cengage who made this book possible: Tran Pham, Product Manager; Mary
Convertino, Learning Designer; Michelle Ruelos Cannistraci, Senior Content Manager; Troy Dundas, Technical Content
Developer; Spencer Peppet, Developmental Editor; Ann Shaffer, Developmental Editor; and Ethan Wheel, Product
Assistant.

Prefacexx

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1

Learning Objectives
When you complete this chapter, you will be able to:

	› 1.1	 Describe the basic features of an algorithm

	› 1.2	 Explain how hardware and software collaborate in a computer’s architecture

	› 1.3	 Summarize a brief history of computing

	› 1.4	 Compose and run a simple Python program

Introduction

Chapter 1

As a reader of this book, you almost certainly have played a video game and listened to digital music. It’s likely
that you have watched a movie on Netflix after preparing a snack in a microwave. Chances are that today you
will make a phone call, send or receive a text message, take a photo, or consult your favorite social network
on a smartphone, which is a small computer. You and your friends have most likely used a desktop or laptop
computer to do significant coursework in high school or college.

Computer technology is almost everywhere: in our homes, schools, and in the places where we work
and play. Computer technology is essential to modern entertainment, education, medicine, manufacturing,
communications, government, and commerce. We have digital lifestyles in an information-based economy.
Some people even claim that nature itself performs computations on information structures present in DNA
and in the relationships among subatomic particles.

In the following chapters you will learn about computer science, which is the study of computation that has
made this new technology and this new world possible. You will also learn how to use computers effectively
and appropriately to enhance your own life and the lives of others.

1.1 �Two Fundamental Ideas of Computer Science:
Algorithms and Information Processing

Like most areas of study, computer science focuses on a broad set of interrelated ideas. Two of the most basic
ones are algorithms and information processing. In this section, these ideas are introduced in an informal way.
You will examine them in more detail in later chapters.

1

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Introduction2

Algorithms
People computed long before the invention of modern computing devices, and many continue to use devices that we
might consider primitive. For example, consider how merchants made change for customers in marketplaces before
the existence of credit cards, pocket calculators, or cash registers. Making change can be a complex activity. It takes
some mental effort to get it right every time. Let’s consider what’s involved in this process.

According to one method, the first step is to compute the difference between the purchase price and the amount
of money that the customer gives the merchant. The result of this calculation is the total amount that the merchant
must return to the purchaser. For example, if you buy a dozen eggs at the farmers’ market for $2.39 and you give the
farmer a $10 bill, she should return $7.61 to you. To produce this amount, the merchant selects the appropriate coins
and bills that add up to $7.61.

According to another method, the merchant starts with the purchase price and goes toward the amount
given. First, coins are selected to bring the price to the next dollar amount (in this case, $0.61 = 2 quarters, 1
dime, and 1 penny), then dollars are selected to bring the price to the next five-dollar amount (in this case,
$2), and then, in this case, a $5 bill completes the transaction. As you will see in this book, there can be many
possible methods or algorithms that solve the same problem, and the choice of the best one is a skill you will
acquire with practice.

Few people can subtract three-digit numbers without resorting to some manual aids, such as pencil and paper.
As you learned in grade school, you can carry out subtraction with pencil and paper by following a sequence of well-
defined steps. You have probably done this many times but never made a list of the specific steps involved. Making
such lists to solve problems is something computer scientists do all the time. For example, the following list of steps
describes the process of subtracting two numbers using a pencil and paper:

Step 1	 Write down the two numbers, with the larger number above the smaller number and their digits aligned
in columns from the right.

Step 2	 Assume that you will start with the rightmost column of digits and work your way left through the
various columns.

Step 3	 Write down the difference between the two digits in the current column of digits, borrowing a 1 from
the top number’s next column to the left if necessary.

Step 4	 If there is no next column to the left, stop. Otherwise, move to the next column to the left, and go back
to Step 3.

If the computing agent (in this case a human being) follows each of these simple steps correctly, the entire process
results in a correct solution to the given problem. We assume in Step 3 that the agent already knows how to compute
the difference between the two digits in any given column, borrowing if necessary.

To make change, most people can select the combination of coins and bills that represent the correct change amount
without any manual aids, other than the coins and bills. But the mental calculations involved can still be described in
a manner similar to the preceding steps, and we can resort to writing them down on paper if there is a dispute about
the correctness of the change.

The sequence of steps that describes each of these computational processes is called an algorithm. Informally,
an algorithm is like a recipe. It provides a set of instructions that tells us how to do something, such as make change,
bake bread, or put together a piece of furniture. More precisely, an algorithm describes a process that ends with a
solution to a problem. The algorithm is also one of the fundamental ideas of computer science. An algorithm has the
following features:

1.	  An algorithm consists of a finite number of instructions.

2.	 Each individual instruction in an algorithm is well defined. This means that the action described
by the instruction can be performed effectively or be executed by a computing agent. For example,

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.1 Two Fundamental Ideas of Computer Science: Algorithms and Information Processing 3

any computing agent capable of arithmetic can compute the difference between two digits. So, an
algorithmic step that says “compute the difference between two digits” would be well defined. On the
other hand, a step that says “divide a number by 0” is not well defined, because no computing agent
could carry it out.

3.	 An algorithm describes a process that eventually halts after arriving at a solution to a problem. For example,
the process of subtraction halts after the computing agent writes down the difference between the two
digits in the leftmost column of digits.

4.	 An algorithm solves a general class of problems. For example, an algorithm that describes how to make
change should work for any two amounts of money whose difference is greater than or equal to $0.00.

Creating a list of steps that describe how to make change might not seem like a major accomplishment to you. But the
ability to break a task down into its component parts is one of the main jobs of a computer programmer. Once you
write an algorithm to describe a particular type of computation, you can build a machine to do the computing. Put
another way, if you can develop an algorithm to solve a problem, you can automate the task of solving the problem.
You might not feel compelled to write a computer program to automate the task of making change, because you can
probably already make change yourself fairly easily. But suppose you needed to do a more complicated task—such as
sorting a list of 100 names. In that case, a computer program would be very handy.

Computers can be designed to run a small set of algorithms for performing specialized tasks, such as operating
a microwave. But we can also build computers, like the one on your desktop, that are capable of performing a
task described by any algorithm. These computers are truly general-purpose problem-solving machines. They
are unlike any machines that were built before, and they have formed the basis of the completely new world in
which we live.

Later in this book, we introduce a notation for expressing algorithms and some suggestions for designing algorithms.
You will see that algorithms and algorithmic thinking are critical underpinnings of any computer system.

Information Processing
Since people first learned to write several thousand years ago, they have processed information. Information itself
has taken many forms in its history, from the marks impressed on clay tablets in ancient Mesopotamia; to the first
written texts in ancient Greece; to the printed words in the books, newspapers, and magazines mass-produced
since the European Renaissance; to the abstract symbols of modern mathematics and science used during the
past 350 years. Only recently, however, have human beings developed the capacity to automate the processing of
information by building computers. In the modern world of computers, information is also commonly referred to
as data. But what is information?

Like mathematical calculations, information processing can be described with algorithms. In our earlier example
of making change, the subtraction steps involved manipulating symbols used to represent numbers and money. In
carrying out the instructions of any algorithm, a computing agent manipulates information. The computing agent
starts with some given information (known as input), transforms this information according to well-defined rules, and
produces new information, known as output.

It is important to recognize that the algorithms that describe information processing can also be represented as
information. Computer scientists have been able to represent algorithms in a form that can be executed effectively
and efficiently by machines. They have also designed real machines, called electronic digital computers, which are
capable of executing algorithms.

Computer scientists more recently discovered how to represent many other things, such as images, music, human
speech, and video, as information. Many of the media and communication devices that we now take for granted would be
impossible without this new kind of information processing. We examine many of these achievements in more detail in
later chapters.

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Introduction4

1.2 The Structure of a Modern Computer System
We now give a brief overview of the structure of modern computer systems. A modern computer system consists of
hardware and software. Hardware consists of the physical devices required to execute algorithms. Software is the set
of these algorithms, represented as programs, in particular programming languages. In the discussion that follows,
we focus on the hardware and software found in a typical desktop computer system, although similar components are
also found in other computer systems, such as smartphones and automatic teller machines (ATMs).

Computer Hardware
The basic hardware components of a computer are memory, a central processing unit (CPU), and a set of
input/output devices, as shown in Figure 1-1.

Input device Output device

CPU

Memory

Figure 1-1  Hardware components of a modern computer system

Human users primarily interact with the input and output devices. The input devices include a keyboard, a mouse,
a trackpad, a microphone, and a touchscreen. Common output devices include a monitor and speakers. Computers can
also communicate with the external world through various ports that connect them to networks and to other devices
such as smartphones and digital cameras. The purpose of most input devices is to convert information that human
beings deal with, such as text, images, and sounds, into information for computational processing. The purpose of
most output devices is to convert the results of this processing back to human-usable form.

These short end-of-section exercises are intended to stimulate your thinking about computing.

1.	 List three common types of computing agents.

2.	 Write an algorithm that describes the second part of the process of making change (counting out the
coins and bills).

3.	 Write an algorithm that describes a common task, such as baking a cake.

4.	 Describe an instruction that is not well defined and thus could not be included as a step in an algorithm.
Give an example of such an instruction.

5.	 In what sense is a laptop computer a general-purpose problem-solving machine?

6.	 List four devices that use computers and describe the information that they process. (Hint: Think of the
inputs and outputs of the devices.)

Exercise 1-1

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.2 The Structure of a Modern Computer System 5

Computer memory is set up to represent and store information in electronic form. Specifically, information is stored
as patterns of binary digits (1s and 0s). To understand how this works, consider a basic device such as a light switch,
which can only be in one of two states, on or off. Now suppose there is a bank of switches that control 16 small lights
in a row. By turning the switches off or on, we can represent any pattern of 16 binary digits (1s and 0s) as patterns of
lights that are on or off. As you will see later in this book, computer scientists have discovered how to represent any
information, including text, images, and sound, in binary form.

Now, suppose there are 8 of these groups of 16 lights. We can select any group of lights and examine or change the
state of each light within that collection. We have just developed a tiny model of computer memory. The memory has
8 cells, each of which can store 16 bits of binary information. A diagram of this model, in which the memory cells are
filled with binary digits, is shown in Figure 1-2. This memory is also sometimes called primary memory or internal
or random access memory (RAM).

1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1
1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1
0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0

Cell 7
Cell 6
Cell 5
Cell 4
Cell 3
Cell 2
Cell 1
Cell 0

Figure 1-2  A model of computer memory

The information stored in memory can represent any type of data, such as numbers, text, images, sound, or the
instructions of a program. Once the information is stored in memory, we typically want to do something with it—that
is, we want to process it. The part of a computer that is responsible for processing data is the central processing unit
(CPU). This device, which is also sometimes called a processor, consists of electronic switches arranged to perform
simple logical, arithmetic, and control operations. The CPU executes an algorithm by fetching its binary instructions
from memory, decoding them, and executing them. Executing an instruction might involve fetching other binary
information—the data—from memory as well.

The processor can locate data in a computer’s primary memory very quickly. However, these data exist only as
long as electric power comes into the computer. If the power fails or is turned off, the data in primary memory are
lost. Clearly, a more permanent type of memory is needed to preserve data. This more permanent type of memory is
called external or secondary memory, and it comes in several forms. Magnetic storage media, such as tapes and hard
disks, allow bit patterns to be stored as patterns on a magnetic field. Semiconductor storage media, such as flash
memory sticks and universal serial bus (USB) drives, perform much the same function with a different technology,
as do optical storage media, such as compact disks (CDs) and digital video disks (DVDs). Some of these secondary
storage media can hold much larger quantities of information than the internal memory of a computer.

Computer Software
You have learned that a computer is a general-purpose problem-solving machine. To solve any computable problem,
a computer must be capable of executing any algorithm. Because it is impossible to anticipate all of the problems for
which there are algorithmic solutions, there is no way to hardwire all potential algorithms into a computer’s hardware.
Instead, some basic operations are built into the hardware’s processor and require any algorithm to use them. The
algorithms are converted to binary form and then loaded, with their data, into the computer’s memory. The processor
can then execute the algorithms’ instructions by running the hardware’s more basic operations.

Any programs that are stored in memory so that they can be executed later are called software. A program stored
in computer memory must be represented in binary digits, which is also known as machine code. Loading machine
code into computer memory one digit at a time would be a tedious, error-prone task for human beings. It would be

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Introduction6

convenient if we could automate this process to get it right every time. For this reason, computer scientists have
developed another program, called a loader, to perform this task. A loader takes a set of machine language instructions
as input and loads them into the appropriate memory locations. When the loader is finished, the machine language
program is ready to execute. Obviously, the loader cannot load itself into memory, so this is one of those algorithms
that must be hardwired into the computer.

Now that a loader exists, you can load and execute other programs that make the development, execution, and
management of programs easier. This type of software is called system software. The most important example of system
software is a computer’s operating system. You are probably already familiar with at least one of the most popular
operating systems, such as Linux, Apple’s macOS, and Microsoft’s Windows. An operating system is responsible for
managing and scheduling several concurrently running programs. It also manages the computer’s memory, including the
external storage, and manages communications between the CPU, the input/output devices, and other computers on a
network. An important part of any operating system is its file system, which allows human users to organize their data and
programs in permanent storage. Another important function of an operating system is to provide user interfaces—that
is, ways for the human user to interact with the computer’s software. A terminal-based interface accepts inputs from a
keyboard and displays text output on a monitor screen. A graphical user interface (GUI) organizes the monitor screen
around the metaphor of a desktop, with windows containing icons for folders, files, and applications. This type of user
interface also allows the user to manipulate images with a pointing device such as a mouse. A touchscreen interface
supports more direct manipulation of these visual elements with gestures such as pinches and swipes of the user’s
fingers. Devices that respond verbally and in other ways to verbal commands are also becoming widespread.

Another major type of software is called applications software, or simply apps. An application is a program that is
designed for a specific task, such as editing a document or displaying a web page. Applications include web browsers,
word processors, spreadsheets, database managers, graphic design packages, music production systems, and games,
among millions of others. As you begin learning to write computer programs, you will focus on writing simple applications.

As you have learned, computer hardware can execute only instructions that are written in binary form—that is, in
machine language. Writing a machine language program, however, would be an extremely tedious, error-prone task. To
ease the process of writing computer programs, computer scientists have developed high-level programming languages
for expressing algorithms. These languages resemble English and allow the author to express algorithms in a form
that other people can understand.

A programmer typically starts by writing high-level language statements in a text editor. The programmer then
runs another program called a translator to convert the high-level program code into executable code. Because it is
possible for a programmer to make grammatical mistakes even when writing high-level code, the translator checks
for syntax errors before it completes the translation process. If it detects any of these errors, the translator alerts the
programmer via error messages. The programmer then has to revise the program. If the translation process succeeds
without a syntax error, the program can be executed by the run-time system. The run-time system might execute the
program directly on the hardware or run yet another program called an interpreter or virtual machine to execute the
program. Figure 1-3 shows the steps and software used in the coding process.

Create high-level
language program

User inputs

Other error messages

Syntax error messages

Program
outputs

Text editor Translator

Run-time
system

Figure 1-3  Software used in the coding process

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 A Not-So-Brief History of Computing Systems 7

1.3 A Not-So-Brief History of Computing Systems
Now that you have in mind some of the basic ideas of computing and computer systems, let’s take a moment to
examine how they have taken shape in history. Figure 1-4 summarizes some of the major developments in the history
of computing. The discussion that follows provides more details about these developments.

Figure 1-4  Summary of major developments in the history of computing

Approximate Dates Major Developments

Before 1800 •	 Mathematicians discover and use algorithms

•	 Abacus used as a calculating aid

•	 First mechanical calculators built by Pascal and Leibniz

Nineteenth century •	 Jacquard’s loom

•	 Babbage’s Analytical Engine

•	 Boole’s system of logic

•	 Hollerith’s punch-card machine

1930s •	 Turing publishes results on computability

•	 Shannon’s theory of information and digital switching

1940s •	 First electronic digital computers

1950s •	 First symbolic programming languages

•	 Transistors make computers smaller, faster, more durable, and less expensive

•	 Emergence of data-processing applications

1960–1975 •	 Integrated circuits accelerate the miniaturization of hardware

•	 First minicomputers

•	 Time-sharing operating systems

•	 Interactive user interfaces with keyboard and monitor

•	 Proliferation of high-level programming languages

•	 Emergence of a software industry and the academic study of computer science

Exercise 1-2

1.	 List two examples of input devices and two examples of output devices.

2.	 What does the central processing unit (CPU) do?

3.	 How is information represented in hardware memory?

4.	 What is the difference between a terminal-based interface and a graphical user interface (GUI)?

5.	 What role do translators play in the programming process?

(continues)

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Introduction8

Approximate Dates Major Developments

1975–1990 •	 First microcomputers and mass-produced personal computers

•	 GUIs become widespread

•	 Networks and the Internet

1990–2000 •	 Optical storage for multimedia applications, images, sound, and video

•	 World Wide Web, web applications, and e-commerce

•	 Laptops

2000–present •	 Wireless computing, smartphones, and mobile applications

•	 Computers embedded and networked in an enormous variety of cars, household
appliances, and industrial equipment

•	 Social networking and use of big data in finance and commerce

•	 Digital streaming of music and video

Before Electronic Digital Computers
Ancient mathematicians developed the first algorithms. The word algorithm comes from the name of a Persian
mathematician, Muhammad ibn Musa al-Khwarizmi, who wrote several mathematics textbooks in the ninth century.
About 2300 years ago, the Greek mathematician Euclid, the inventor of geometry, developed an algorithm for computing
the greatest common divisor of two numbers.

A device known as the abacus also appeared in ancient times. The abacus helped people perform simple arithmetic.
Users calculated sums and differences by sliding beads on a grid of wires (see Figure 1-5a). The configuration of beads
on the abacus served as the data.

In the seventeenth century, the French mathematician Blaise Pascal (1623–1662) built one of the first mechanical
devices to automate the process of addition (see Figure 1-5b). The addition operation was embedded in the configuration
of gears within the machine. The user entered the two numbers to be added by rotating some wheels. The sum or output
number appeared on another rotating wheel. The German mathematician Gottfried Wilhelm Leibniz (1646–1716) built
another mechanical calculator that included other arithmetic functions such as multiplication. Leibniz, who invented
calculus concurrently with Newton, went on to propose the idea of computing with symbols as one of our most basic
intellectual activities. He argued for a universal language in which one could solve any problem by calculating.

Early in the nineteenth century, the French engineer Joseph-Marie Jacquard (1752–1834) designed and constructed
a machine that automated the process of weaving (see Figure 1-5c). Until then, each row in a weaving pattern had to
be set up by hand, a quite tedious, error-prone process. Jacquard’s loom was designed to accept input in the form of
a set of punched cards. Each card described a row in a pattern of cloth. Although it was still an entirely mechanical
device, Jacquard’s loom possessed something that previous devices had lacked—the ability to execute an algorithm
automatically. The set of cards expressed the algorithm or set of instructions that controlled the behavior of the
loom. If the loom operator wanted to produce a different pattern, he just had to run the machine with a different
set of cards.

The British mathematician Charles Babbage (1792–1871) took the concept of a programmable computer a step
further by designing a model of a machine that, conceptually, bore a striking resemblance to a modern general-
purpose computer. Babbage conceived his machine, which he called the Analytical Engine, as a mechanical device.
His design called for four functional parts: a mill to perform arithmetic operations, a store to hold data and a program,
an operator to run the instructions from punched cards, and an output to produce the results on punched cards.
Sadly, Babbage’s computer was never built. The project perished for lack of funds near the time when Babbage
himself passed away.

Figure 1-4  Summary of major developments in the history of computing  (continued)

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.3 A Not-So-Brief History of Computing Systems 9

In the last two decades of the nineteenth century, a U.S. Census Bureau statistician named Herman Hollerith
(1860–1929) developed a machine that automated data processing for the U.S. Census. Hollerith’s machine, which
had the same component parts as Babbage’s Analytical Engine, simply accepted a set of punched cards as input and
then tallied and sorted the cards. His machine greatly shortened the time it took to produce statistical results on the
U.S. population. Government and business organizations seeking to automate their data processing quickly adopted
Hollerith’s punched card machines. Hollerith was also one of the founders of a company that eventually became
International Business Machines (IBM).

Also in the nineteenth century, the British secondary school teacher George Boole (1815–1864) developed a system
of logic. This system consisted of a pair of values, TRUE and FALSE, and a set of three primitive operations on these
values, AND, OR, and NOT. Boolean logic eventually became the basis for designing the electronic circuitry to process
binary information.

A half century later, in the 1930s, the British mathematician Alan Turing (1912–1954) explored the theoretical
foundations and limits of algorithms and computation. Turing’s essential contributions were to develop the concept
of a universal machine that could be specialized to solve any computable problems and to demonstrate that some
problems are unsolvable by computers.

Figure 1-5  Some early computing devices

Ch
ew

H
ow

/S
hu

tt
er

st
oc

k.
co

m

Ar
ch

iv
is

t/
Ad

ob
e

St
oc

k
Ph

ot
os

N
as

ta
si

c/
G

et
ty

 Im
ag

es

(a) Abacus

(b) Pascal’s Calculator (c) Jacquard’s Loom

Copyright 2024 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

